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ABSTRACT 

We show t ha t  the  vert ices of  the  g raph  of  any  polyhedra l  m a p  on t he  

project ive  plane,  to rus  or Klein bot t le  can  be  covered by a s u b g r a p h  t ha t  

is a tree of  m a x i m u m  valence 3. T h i s  ex t ends  a t heo rem of the  au thor ,  who 

previously  proved th is  t heo rem for the  g r a p h s  of 3 -d imens iona l  poly topes .  

Several  t h e o r e m s  deal ing wi th  p a t h s  in po lyhedra l  m a p s  are  a consequence  

of these  theorems .  

1. In troduct ion  

In [3] the author proved that if G is a planar 3-connected graph then G has a 

subgraph T that is a tree, covers the vertices of G, and has maximum valence 3. 

By a theorem of Steinitz, the planar 3-connected graphs are isomorphic to the 

graphs consisting of the vertices and edges of convex 3-dimensional polytopes. 

Natural analogs of planar 3-connected graphs would be the graphs that  are em- 

bedded in 2-dimensional manifolds so that they induce a facial structure similar 

to that of 3-dimensional polytopes. 

In this paper we extend the above mentioned theorem to these graphs when 

the manifolds are the projections plane, torus or Klein bottle. 

2. Def in i t i ons  a n d  p r e l i m i n a r y  r e su l t s  

If a graph G is embedded in a manifold M, then the closures of the connected 

components of M - G are called the faces of G. If each two faces meet on a 

vertex, an edge or not at all, we say that faces meet p r o p e r l y .  If each face is a 

closed 2-cell and faces meet properly we say that G is a p o l y h e d r a l  m ap .  
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A graph G is said to be n - c o n n e c t e d  if and only if it has at least n + 1 vertices 

and one must remove at least n vertices to disconnect G. By a theorem of Menger 

[4] this is equivalent to saying that between any two vertices of G there are n 

paths that  meet only their endpoints. 

When the faces are 2-cells the condition of faces meeting properly is the same 

as saying that no two faces have a multiply connected union and all vertices are at 

least 3-vaient. In [2] the author shows that this condition implies 3-connectedness, 

thus polyhedral maps are 3-connected. 

Our method of proof of the main theorem for the Klein bottle or torus will 

be to take a subset of the faces whose union is an annulus or M6bius strip and 

contains all of the vertices of M. We will then apply a strengthened version of 

the above mentioned theorem in [3] to this annulus. In [1] the author proves that 

such an annular subset always exists. 

If T is a tree of maximum valence 3 then we shall call it a 3- tree.  If a subgraph 

H of G contains all vertices of G we say that H covers  G. 

If G is a planar 3-connected graph embedded in the plane, and if J is a simple 

(i.e., non-selfintersecting) circuit in G then we denote the graph consisting of J 

and all vertices and edges of G inside J by G(J). All such graphs will be called 

circuit g r a phs .  An edge of G(J) not on J will be called an i n t e r i o r  edge  of 

G(J). Any vertex of J that meets an interior edge will be called a m a j o r  v e r t e x  

of J .  A face F of G(J) is said to s e p a r a t e  G(J) provided there are two vertices 

of F that  separate G(J) into two components, each containing an interior edge. 

3. 3-Trees in circuit graphs 

In [4] we proved that  every circuit graph is covered by a 3-tree. We now strengthen 

that  theorem: 

THEOREM 1: If v is a vertex of a circuit graph G(J) then there is a 3-tree T 

covering G with v 1-valent in T. 

Proof." Our proof is by induction on the number of interior edges of G(J). The 

theorem is clearly true if G(J) has no interior edges and is thus a circuit. If G(J) 

has interior edges, we treat three cases. 

CASE I: There is a major  vertex x # v such that  no face meeting x separates 

J .  We apply the inductive step in [3]. This involves removing faces F2,. . . ,  Fn 

from G(J) as shown in Fig.1. 
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Fig. 1 

In the resulting circuit graph G( J ' ) ,  z is 2-valent and by induction there is a 

3-tree T ~ covering G(J ~) that  is at most 2-valent at x. The tree is easily extended 

to G(J) by adding a pa th  along Fn to cover the 2-valent vertices of Fn. If v 

is not one of these 2-valent vertices then we may also assume by induction that  

v is 1-valent in T ~ and thus also in T. If v is one of these 2-valent vertices, 

then we apply a symmetric  argument,  removing the faces F1,...,  Fn-1 instead 

of F ~ , . . . ,  Fn. We note that  this will work because we cannot have F1 = F,~ (if 

F1 = Fn then x separates G). 

CASE II: Every major  vertex meets a face that  separates J .  In [3] we show that  

in this case there is an interior edge that  can be removed producing a smaller 

circuit graph which by induction can be covered by a 3-tree. The same 3-tree 

covers G(J). Clearly this argument is not affected by our strengthening of the 

induction hypothesis. 

CASE I I I :  V is a major  vertex that  does not meet a separating face while all 

other major  vertices meet separating faces. 

Let y be a major  vertex meeting a separating face F.  For every separating 

face F there are two subpaths of J which are edge disjoint and meet F only at 
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their endpoints. We partially order the set of all these paths associated with all 

separating faces by inclusion. For the face F,  one of the associated subpaths P 

of J will not contain v. We choose a minimal subpath P '  contained in P.  The 

same argument as in [3] shows that  the endpoints of P are the vertices of an edge 

whose removal produces a circuit graph with fewer interior edges and thus yields 

a covering 3-tree as in Case II. | 

THEOREM 2: Every polyhedral map M on the torus has a covering &tree. 

Proof: By a theorem of the author [1] there is an annulus A in M consisting 

of faces of M and containing all vertices of M. Let the two bounding circuits of 

A be C1 and C2. We embed A in the plane so that  C1 bounds a bounded face 

and C2 bounds the unbounded face. We place a new vertex V inside C1 and join 

it to each vertex of C1 producing a graph G. Next we place a vertex w in the 

unbounded face and join it to all vertices of C2 producing a graph G'.  

We claim that  G'  is 3-connected. To show this it suffices to show that  no two 

faces have a multiply conncected union (clearly all vertices have valence at least 

three). This condition holds for any two faces of A because it holds in M. No 

face meeting v will meet a face meeting w, thus the only case remaining is a face 

F1 meeting v (or equivalently w) and a face F2 of A. The face F1 meets C1 on 

an edge e, thus the only way we can have a multiply connected union is if F2 

meets e just at its endpoints. This, however, is impossible because then in M,  

F2 would meet a face just at the endpoints of e. 

It  now follows that  G' - w is a circuit graph. By Theorem 1 there is a 3-tree T 

covering G'  - w with v 1-valent. If  we remove the edge of T meeting v we have 

a 3-tree covering the vertices of M. | 

THEOREM 3: Every polyhedral map M on the projective plane has a covering 

3-tree with any prescribed vertex 1-valent. 

Proof." The complement of a cell in the projective plane is a MSbius strip. Let 

A be a maximal  cell that  is the union of faces of A. We shall show that  A covers 

M. First we observe that  A can be chosen so that  at least one vertex is not on 

the boundary of A, because we can begin with the set of faces meeting a vertex 

and take a maximal cell containing that  cell. 

Suppose now, that  a vertex x lies in the complementary MSbius strip S. We 

choose three independent paths PI ,  P2 and P3 from x to a vertex of A not on 

the boundary of A. 
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For each pa th  Pi let Qi be the subpath of Pi from x to the first vertex xl of 

A on P~. Two of the three paths,  Qi and Q j,  together with a pa th  P along the 

boundary of S from xi to xj will enclose a cell meeting A on P.  Adjoining this 

cell to A produces a cell that  contradicts the maximali ty of A, thus all vertices 

of M are in A. 

The cell A can be seen to be a circuit graph by embedding it in the plane with 

the boundary B of A as the unbounded face and joining each vertex of B to a 

new vertex w. As in the proof of Theorem 2, this new graph is 3-connected, thus 

A is a circuit graph. 

By Theorem 1, a 3-tree covers A with any prescribed vertex 1-valent. The 

same tree covers M. | 

THEOREM 4: Every polyhedrM map M on the Klein bottle has a covering 3-tree. 

Proof: By a theorem of the author [1], there is a subset of the faces of M 

whose union S is a MSbius strip containing all of the vertices of M. We span the 

boundary of S by a cell. Next we place a new vertex v in the relative interior 

of this cell and join it to each vertex of the boundeary of S. This produces a 

polyhedral map M '  in the projective plane. 

By Theorem 3 we can cover M '  with a 3-tree with v being 1-valent. Removing 

the edge of the 3-tree meeting v gives a 3-tree covering S and thus also covering 

M. II 

THEOREM 5: If M is a polyhedral map  on the torus, Klein bottle or projective 

plane and if M has n vertices then: 

(i) The vertices of  M can be covered by (n + 2)/3 or fewer disjoint simple 

paths. 

(ii) There is a simple path in M with at least 2 log 2 n - 5 vertices. 

(iii) There is a simple circuit in M with at least 2V/21og 2 n - 5 vertices. 

(iv) Between any two vertices there is a simple path with at least V/2 log 2 n - 5 

vertices. 

Proof: 

| 
The proof is identical to the proof for planar 3-connected graphs in [3]. 
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